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Numerical analysis of a Langevin equation for systems with infinite absorbing states
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One-dimensional systems with an infinite number of absorbing states exhibit a phase transition that is not
fully understood yet. Their static critical exponents are universal and belong in the Reggeon field theory~or
directed percolation! universality class. However, exponents associated with the spreading of a localized seed
appear to be nonuniversal depending on the nature of the initial condition. We investigate this problem by
integrating numerically a non-Markovian Langevin equation proposed recently to describe such phase transi-
tions. We find that the static critical exponents are universal, as expected. On the other hand, the Langevin
equation reproduces the nonuniversal behavior observed in microscopic models for exponents associated with
the spreading of an initially localized seed and satisfies the generalized hyperscaling relation proposed for those
systems.@S1063-651X~97!02210-1#

PACS number~s!: 05.50.1q, 02.50.2r, 64.60.Ak, 05.70.Ln
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Nonequilibrium dynamical phase transitions have
tracted a lot of attention in the past decade. Transitions
an absorbing stateconstitute an archetype of such a class
phenomena. These transitions separate a nontrivialactive
phasefrom anabsorbing phase, that is, a phase in which th
system gets trapped, with probability one, into a mic
scopic, fluctuation-free state, i.e., an absorbing state, f
which it cannot escape.

As conjectured by Janssen and Grassberger@1#, many dif-
ferent numerical and analytical studies have establis
clearly by now that all the systems exhibiting a continuo
transition into aunique absorbing state, without any othe
extra symmetry or conservation law, belong into the sa
universality class, namely, that of directed percolation@2,3#.
That same conjecture was extended to include multicom
nent systems by Grinsteinet al. @4#. Among other micro-
scopic models in that broad class are the following: direc
percolation@2,3#, the contact process@5#, catalytic reactions
on surfaces@6#, branching annihilating random walks wit
odd parity@7#, damage spreading@8#, and self-organized sys
tems @9#. The Reggeon field theory~RFT! is the minimal
continuous theory capturing the key features of this univ
sality class@10,1#, which is often referred to as directed pe
colation ~DP! universality class.

There are microscopic models in which the number
absorbing configurations grows exponentially with syst
size, being infinity in the thermodynamic limit. Some e
amples are the pair contact process@11,12#, the threshold
transfer process@13#, and models of catalytic surface rea
tions such as the dimer reaction@12,14,15#. The critical be-
havior of these systems is by far more complex and man
their properties remain to be understood. Numerical stud
confirm that, as far as the static critical behavior is co
cerned, all these systems belong in the DP universality cl
However, the critical exponents that characterize the spre
ing of an initially localized perturbation~or seed! in an oth-
erwise absorbing configuration are observed to depend
the nature of the absorbing state and are therefore nonun
sal @11,13#.
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An analytical attempt to understand the physics of s
tems with an infinite number of absorbing states was p
sented in a recent paper@16#, in which a continuous field
theory characterizing the physics of this phase transition
proposed. That field theory, expressed in terms of an stoc
tic partial differential~Langevin! equation, reads

] tn~xW ,t !5¹2n1rn2un21an expS 2w1E
0

t

n~xW ,s!dsD
1Anh~xW ,t !, ~1!

where r , u, a, and w1 are constants,n(xW ,t) is the density
field at positionxW and timet, andh(xW ,t) is a Gaussian white
noise with zero mean and covariance

^h~xW ,t !h~xW8,t8!&5Dd~xW2xW8!d~ t2t8! ~2!

for some noise amplitudeD. Expression~1! is identical to
the Langevin equation representing the Reggeon field the
except for the extra non-Markovian term, which at eve
moment keeps track of all the system time evolution, wh
is absent in the RFT. Note that Eq.~1! has only one absorb
ing configuration, namely,n(xW )50 for all xW . It is argued in
@16# that all the physical differences between systems wit
unique or with infinitely many absorbing states are captu
in the additional non-Markovian~exponential! term. The de-
pendence of the microscopic models on the nature of
absorbing states is substitute in Eq.~1! by the parametera. It
is justified in @16# ~at least at a mean-field level! that when
the initial absorbing state is thenatural one, that is, an ab-
sorbing state generated by the running system, thena50
and the RFT is recovered. This prediction agrees with
microscopic measurements that show that RFT critical ex
nents are recovered only when the natural absorbing sta
considered as environment of an initial seed.

From the present Langevin equation~1! it is concluded in
@16# that the exponential term is irrelevant in th
renormalization-group sense when computing static crit
properties and consequently Eq.~1! belongs in the RFT uni-
4864 © 1997 The American Physical Society
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TABLE I. Numerical values of the critical exponents for different values ofa.

a h d h1d z u

20.1 0.1860.01 0.3060.01 0.4860.02 1.2660.02 0.1560.01
20.08 0.2160.01 0.2760.01 0.4860.02 1.2560.02 0.1560.01

0.0 0.3060.01 0.1760.01 0.4760.02 1.2760.02 0.1760.02
0.2 0.3760.01 0.1160.01 0.4860.02 1.2860.03 0.1760.02
0.3 0.4360.01 0.0960.01 0.5260.02 1.2860.03 0.1560.02
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versality class, as observed in the microscopic models. H
ever, using the same type of arguments, nothing can be
cluded about the nature of the transition for the spreading
an initially localized seed and in particular whether it is a
RFT-like or is nonuniversal. In fact, for localized-seed ty
of initial conditions, the extra non-Markovian term cannot
argued to be irrelevant, the reason being that when a poi
visited for the first time the exponential term gives a corr
tion to themass, i.e., to the linear term, which affects sig
nificantly the spreading of the occupied region over the
sorbing space. When a large system is considered, ther
points that are visited for the first time at every time step a
consequently the non-Markovian term always influences
nature of the spreading. Whether this effect is enough
modify the spreading critical exponents is still an open qu
tion.

In this paper we investigate numerically whether t
present field theory~1! exhibits the nonuniversal behavio
described in one-dimensional microscopic models.
achieve that goal we perform a numerical integration of E
~1! with localized initial conditions. Now we present th
method and the main results.

The numerical integration of a stochastic different
equation with absorbing states is not a trivial issue. The us
approaches used to study stochastic partial differential e
tions ~see, for example, the integration of the Kardar-Par
Zhang equation@17# or of the time-dependent Ginzburg
Landau equation@18#! are not appropriate to deal wit
equations exhibiting an absorbing state. The reason is
the use of those integration methods without further c
generates negative, unphysical values for the field varia
and afterward the methods become unstable. Therefor
more careful scheme is required to integrate Eq.~1!.

A numerical algorithm for the numerical study of the RF
has been proposed recently by Dickman@19#. This integra-
tion scheme, which we employ in this paper, consists es
tially of the following ingredients~see@19# for more details!.

~i! There are time and space discretizations. Derivati
are substituted by discrete lattice derivatives.

~ii ! The discretization of the field variable at every point
done by defining a minimum nonvanishing density at ev
lattice sitenmin( i ,t) proportional toDt. This discretization
choice prevents, as explained in@19#, the field from becom-
ing negative. The key point is that in this way the modulus
the maximum possible jump ofn( i ,t) is guaranteed to be
smaller thann( i ,t) in any case. A new discrete fieldm( i ,t)
is defined asm( i ,t)5@n( i ,t)/nmin( i ,t)#, where @ # denotes
the integer part.

~iii ! There is a rescaling of the equation, using its inva
ance under the following set of transformation
u→u85unmin , w1→w185w1nmin , n( i ,t)→m( i ,t)
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5n( i ,t)/nmin , D→D85D/nmin .
~iv! Since m( i ,t) can experience only ‘‘quantized’

changes and the discretized equation generates ‘‘jumps
arbitrary length@smaller thanm( i ,t)#, an intermediate field
variable f ( i ,t) that accumulates the values of small chang
at every point is introduced. When the total accumula
variation at a given positioni exceedsnmin( i ,t), the values
of m( i ,t) and f ( i ,t) are actualized according t
m( i ,t)→m( i ,t)1@ f ( i ,t)# and f ( i ,t)→ f ( i ,t)2@ f ( i ,t)#.

In this way the original stochastic partial differenti
equation can be studied by analyzing the discrete dynam
system

f ~ i ,t1Dt !2 f ~ i ,t !5F rm~ i ,t !2u8m~ i ,t !21¹d
2m~ i ,t !

1am~ i ,t !expS 2w18(
0

t

mDt D GDt

1@Dtm~ i ,t !#1/2h~ i ,t !

and

m~ i ,t !→m~ i ,t !1@ f ~ i ,t !#,

f ~ i ,t !→ f ~ i ,t !2@ f ~ i ,t !#, ~3!

where¹d is the discretized Laplacian operator andh( i ,t) are
independent Gaussian noises with zero mean and vari
D8. This process approaches the continuous equation in
double limit Dx→0 andDt→0. Note thatm( i )50 for all i
is an absorbing state.

Employing the above-described scheme, extensive c
puter simulations have been performed. We have fix
Dt50.02 andDx51 and considered a lattice of variab
size. Other parameters areu50.02, w151, andD850.5. At
time t50 the system is initialized with a localized see
given bym( i ,0)510Q( i 14)@12Q( i 24)#, whereQ is the
step function. Initially, the lattice size is fixed to be slight
larger than the central occupied region and it is progressiv
enlarged as the occupied region spreads out in such a
that the active region does not reach the boundaries.
every set of parameter values we average over up to 40
independent runs and study the following magnitudes a
function of time: the sum of the density fields over the who
lattice ~averaged over all the runs including those that ha
reached the absorbing states! N(t), the overall surviving
probability Ps(t), that is, the probability that the system h
not reached the absorbing state at timet, and the mean-
square distance of spreading from the origin of the surviv
trials: R2(t)5( i i

2m( i ,t)/N(t). Right at the critical point
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FIG. 1. ~a! ln@N(t)# vs ln(t), ~b! ln@Ps(t)# vs ln(t), ~c! ln@R2(t)# vs ln(t), and~d! ln@N(i50,t)# vs ln(t) for r 520.50583,w151, and~from top to bottom!
a50.3 ~solid line!, a50.2 ~dotted line!, a50.0 ~dashed line!, a520.08 ~long-dashed line!, anda520.1 ~dot-dashed line!, respectively.
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there is no characteristic time scale and these magnitu
scale asymptotically as power laws

N~ t !}th, ~4!

Ps~ t !}t2d, ~5!

and

R2~ t !}tz. ~6!

In order to test the numerical procedure we start with
analysis of the RFT, which corresponds to fixinga50. The
critical point is located using the idea that the previou
introduced magnitudes exhibit a power-law behavior righ
the critical point and deviate from it out of criticality.

As at the critical point for long enough time
h5d ln@N(t)#/d ln(t), a plot ofd ln@N(t)#/d ln(t) as a function
of 1/t should give a straight line for small 1/t right at the
critical point, while for values slightly subcritical or supe
critical the curves of that plot should exhibit some curvatu
Using that idea, the critical point can be located accuratel
es

e

t

.
it

is found to be atr c'20.505 83, whiler 520.505 84 and
r 520.505 82 are in the absorbing and active phases, res
tively. From the extrapolated value of the critical curves
1/t50 we measure the critical exponentsh50.3060.01,
d50.1760.01, andz51.2760.01. All of them are consis-
tent within the accuracy limits with the known RFT on
dimensional valuesh'0.312, d'0.159, andz'1.264 and
with the scaling law for the RFT@2,3#, confirming in this
way the validity of the integration method.

As was said previously, the dependence of the mic
scopic models with an infinite number of absorbing states
the nature of the initial absorbing state has it counterpar
the exponential non-Markovian term in Eq.~1! @16#. There-
fore, in order to study whether or not that dependence affe
the critical behavior in the field theory, we study the Lang
vin equation for different values ofa.

We have performed simulations fora50.3, 0.2,20.08,
and 20.1 and found the following results~see Table I and
Fig. 1!. ~i! We observe no measurable shift in the critic
point with respect to the RFT (a50) case:r c'20.505 83
in all the cases, i.e., the critical point location does not
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pend ona. ~ii ! The exponentsh andd are not universal and
depend continuously ona. ~iii ! The exponentz is universal
and takes its RFT value.~iv! The combinationh1d, which
describes the asymptotic behavior of the total number of p
ticles averaged over the surviving runs, is constant for all
a values. The numerical values are presented in Table I

All the above results are in very good agreement w
what is found in the microscopic models. In particular, no
that the exponents associated with magnitudes obtained
averaging only over surviving runs~z and h1d! appear to
be universal, while those involving the surviving probabili
~h andd! present a nonuniversal behavior asa is varied. To
further check this conclusion, we have perform other sim
lations varying the value ofw1 . Note that by tuning this
parameter the non-Markovian effect can be reduced or
plified, i.e., large values ofw1 imply that the exponentia
converges rapidly to zero and the memory is small; cont
ily, small w1 values intensify the memory. In all the case
we observe that the convergence time, that is, the time
quired to observe the asymptotic regime, depends onw1 , but
the critical exponents do not.

Finally, we have also computed the exponentu that con-
trols the decay of the density at the origin as a function
time ~see Table I!. As the system evolves the origin gets,
average, deeper and deeper into the cluster of occupied
The bulk properties of this cluster have to coincide w
those obtained in experiments starting with a homogene
initial condition. For that type of initial condition and whe
the system in tuned to the critical point, any initial dens
decays asymptotically to zero with an exponentu, i.e.,
^n(0,t)&'t2u. Therefore, measuringu we can determine
whether the bulk critical properties of the non-Markovi
theory are RFT-like as predicted in@16#.

Results of the simulations are presented in Table I~see the
last column!. It is clear that within the accuracy limit
u'0.16 is the same for all the values ofa, confirming the
prediction in@16#.

Using the set of measured exponents, we can check
scaling relation proposed for systems with an infinite num
of absorbing states@13,20#, namely,
.
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2~d1h!12u5dz, ~7!

for different values ofa. In DP it can be shown@13,20# that
u5d and therefore the scaling relation reads 4d12h5dz,
but, in general,uÞd. Note that as Eq.~7! depends on the
combination ofh1d, z, andu and these three are constan
for different values ofa, the hyperscaling relation is satisfie
within the accuracy limits in all the cases. Therefore, t
one-dimensional Langevin equation with only one absorb
state and a non-Markovian term reproduces remarkably w
all the phenomenology of systems with an inifinite numb
of absorbing states.

We have applied a numerical scheme, introduced
Dickman for the study of stochastic partial differential equ
tions, to the analysis of a non-Markovian Langevin equati
This Langevin equation was recently proposed as a theo
ical description of systems with an infinite number of abso
ing states. Our numerical study confirms the theoretical p
diction that the bulk critical properties are universal a
belong in the Reggeon field theory universality class. On
other hand, we have shown that the model reproduces
the, so far not well understood, nonuniversal critical beh
ior observed in spreading experiments in microscopic m
els, as well as the hyperscaling relation proposed for t
class of system. Therefore, the one-dimensional Lange
equation with only one absorbing state and a non-Markov
term reproduces remarkably well all the phenomenology
systems with an inifinite number of absorbing states. Und
standing analytically the nonuniversality from the fie
theory remains an open challenge. Further analysis and
tension of these conclusions to higher dimensions
planned to be presented elsewhere@21#.
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