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Numerical analysis of a Langevin equation for systems with infinite absorbing states
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One-dimensional systems with an infinite number of absorbing states exhibit a phase transition that is not
fully understood yet. Their static critical exponents are universal and belong in the Reggeon field(tineory
directed percolationuniversality class. However, exponents associated with the spreading of a localized seed
appear to be nonuniversal depending on the nature of the initial condition. We investigate this problem by
integrating numerically a non-Markovian Langevin equation proposed recently to describe such phase transi-
tions. We find that the static critical exponents are universal, as expected. On the other hand, the Langevin
equation reproduces the nonuniversal behavior observed in microscopic models for exponents associated with
the spreading of an initially localized seed and satisfies the generalized hyperscaling relation proposed for those
systems[S1063-651X97)02210-1
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Nonequilibrium dynamical phase transitions have at- An analytical attempt to understand the physics of sys-
tracted a lot of attention in the past decade. Transitions inttems with an infinite number of absorbing states was pre-
anabsorbing stateonstitute an archetype of such a class ofsented in a recent papgt6], in which a continuous field
phenomena. These transitions separate a nontragéive  theory characterizing the physics of this phase transition was
phasefrom anabsorbing phasethat is, a phase in which the Proposed. That field theory, expressed in terms of an stochas-
system gets trapped, with probability one, into a micro-tic partial differential(Langevir equation, reads
scopic, fluctuation-free state, i.e., an absorbing state, from .
which it cannot escape. _ an(X,t)=V2n+rn—un?+an exp( —W1J’ n(i,s)ds)

As conjectured by Janssen and Grassbdrtemany dif- 0
ferent numerical and analytical studies have established .
clearly by now that all the systems exhibiting a continuous + ‘/ﬁ”(x’t)’ @
transition into aunique absorbing state, without any other
extra symmetry or conservation law, belong into the same. . : I . X
universality class, namely, that of directed percolafi®;3]. |el_d at posmonx and timet, and ”.(X’t) is a Gaussian white

; i ; noise with zero mean and covariance
That same conjecture was extended to include multicompo-
nent systems by Grinsteiat al. [4]. Among other micro-
scopic models in that broad class are the following: directed
percolation(2,3], the co_ntact pr_o<_:es{§], catalytic reaction; for some noise amplitud®. Expression(1) is identical to
on surfaceq6], branching annihilating random walks with he | angevin equation representing the Reggeon field theory
odd parity[ 7], damage spreadiri@], and self-organized sys- gycent for the extra non-Markovian term, which at every
tems[9]. The Reggeon field theorfRFT) is the minimal  oment keeps track of all the system time evolution, which
continuous theory capturing the key features of this univeris gpsent in the RET. Note that E@) has only one absorb-
Sa“ty Clasilo,l], which is often referred to as directed per- |ng Conﬁguraﬂon, name'w()‘(’)zo for all X. Itis argued in
colation(DP) universality class. [16] that all the physical differences between systems with a

There are microscopic models in which the number ofunique or with infinitely many absorbing states are captured
absorbing configurations grows exponentially with systemin the additional non-Markoviatexponential term. The de-
size, being infinity in the thermodynamic limit. Some ex- pendence of the microscopic models on the nature of the
amples are the pair contact procd44,17, the threshold absorbing states is substitute in Efj). by the parametes. It
transfer proces§13], and models of catalytic surface reac- is justified in[16] (at least at a mean-field leyehat when
tions such as the dimer reactiph2,14,19. The critical be-  the initial absorbing state is theatural one, that is, an ab-
havior of these systems is by far more complex and many o$orbing state generated by the running system, #aerO
their properties remain to be understood. Numerical studieand the RFT is recovered. This prediction agrees with the
confirm that, as far as the static critical behavior is con-microscopic measurements that show that RFT critical expo-
cerned, all these systems belong in the DP universality clasgents are recovered only when the natural absorbing state is
However, the critical exponents that characterize the spreagonsidered as environment of an initial seed.
ing of an initially localized perturbatiofor seed in an oth- From the present Langevin equatil) it is concluded in
erwise absorbing configuration are observed to depend dii6] that the exponential term is irrelevant in the
the nature of the absorbing state and are therefore nonunivetenormalization-group sense when computing static critical
sal[11,13. properties and consequently E@) belongs in the RFT uni-

herer, u, a, andw; are constants(X,t) is the density

(%) 7(X' 1)) =D&(K—X')d(t—t") 2
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TABLE I. Numerical values of the critical exponents for different valuesvof

@ 7 1) n+to z 0
-0.1 0.18-0.01 0.36:0.01 0.48-0.02 1.26:0.02 0.15:0.01
—0.08 0.21x0.01 0.27:0.01 0.48-0.02 1.25-0.02 0.15-0.01

0.0 0.30£0.01 0.170.01 0.47-0.02 1.270.02 0.1720.02

0.2 0.370.01 0.11-0.01 0.48-0.02 1.28-0.03 0.1720.02

0.3 0.43-0.01 0.09-0.01 0.52-0.02 1.28-0.03 0.15-0.02

versality class, as observed in the microscopic models. How=n(i,t)/nyi,, D—D’=D/nyp-
ever, using the same type of arguments, nothing can be con- (iv) Since m(i,t) can experience only ‘“guantized”
cluded about the nature of the transition for the spreading ofhanges and the discretized equation generates “jumps” of
an initially localized seed and in particular whether it is alsoarbitrary length[smaller thanm(i,t)], an intermediate field
RFT-like or is nonuniversal. In fact, for localized-seed typevariablef(i,t) that accumulates the values of small changes
of initial conditions, the extra non-Markovian term cannot beat every point is introduced. When the total accumulated
argued to be irrelevant, the reason being that when a point gariation at a given position exceeds,;(i,t), the values
visited for the first time the exponential term gives a correcof m(i,t) and f(i,t) are actualized according to
tion to themass i.e., to the linear term, which affects sig- m(i,t)—m(i,t)+[f(i,t)] and f(i,t)—f(i,t)—[f(i,t)].
nificantly the spreading of the occupied region over the ab- |n this way the original stochastic partial differential
sorbing space. When a large system is considered, there agguation can be studied by analyzing the discrete dynamical
points that are visited for the first time at every time step andystem
consequently the non-Markovian term always influences the
nature of the spreading. Whether this effect is enough to
modify the spreading critical exponents is still an open ques- f(i,t+At)—f(i ,t):[rm(i B —u'm(i, )2+ Vgm(i,b)
tion.
In this paper we investigate numerically whether the t
present field theor(1) exhibits the nonuniversal behavior +am(i,t)exp( —wiE mAt”At
described in one-dimensional microscopic models. To 0
achieye that goal we perform a numerical integration of Eq. +[AtM(i )] 25(i 1)
(1) with localized initial conditions. Now we present the
method and the main results. and
The numerical integration of a stochastic differential
equation with absorbing states is not a trivial issue. The usual m(i,t)—m(i,t)+[f(i,t)],
approaches used to study stochastic partial differential equa-
tions (see, for example, the integration of the Kardar-Parisi- f(i,t)—f(i,t)—[f(i,1)], 3)
Zhang equation17] or of the time-dependent Ginzburg-
Landau equation[18]) are not appropriate to deal with whereVy is the discretized Laplacian operator and,t) are
equations exhibiting an absorbing state. The reason is thindependent Gaussian noises with zero mean and variance
the use of those integration methods without further card’. This process approaches the continuous equation in the
generates negative, unphysical values for the field variabldouble limitAx—0 andAt—0. Note thatm(i)=0 for all i
and afterward the methods become unstable. Therefore, ia an absorbing state.
more careful scheme is required to integrate @g. Employing the above-described scheme, extensive com-
A numerical algorithm for the numerical study of the RFT puter simulations have been performed. We have fixed
has been proposed recently by Dicknid®]. This integra- At=0.02 andAx=1 and considered a lattice of variable
tion scheme, which we employ in this paper, consists essersize. Other parameters ane=0.02,w;=1, andD’'=0.5. At
tially of the following ingredientgsee[19] for more details  time t=0 the system is initialized with a localized seed
(i) There are time and space discretizations. Derivativegiven bym(i,0)=100(i +4)[1—0(i —4)], where® is the
are substituted by discrete lattice derivatives. step function. Initially, the lattice size is fixed to be slightly
(i) The discretization of the field variable at every point is larger than the central occupied region and it is progressively
done by defining a minimum nonvanishing density at everyenlarged as the occupied region spreads out in such a way
lattice sitenp,;q(i,t) proportional toAt. This discretization that the active region does not reach the boundaries. For
choice prevents, as explained[it9], the field from becom- every set of parameter values we average over up to 40 000
ing negative. The key point is that in this way the modulus ofindependent runs and study the following magnitudes as a
the maximum possible jump ai(i,t) is guaranteed to be function of time: the sum of the density fields over the whole
smaller tham(i,t) in any case. A new discrete fietd(i,t) lattice (averaged over all the runs including those that have
is defined aam(i,t)=[n(i,t)/ny(i,t)], where[ ] denotes reached the absorbing statdd(t), the overall surviving
the integer part. probability P4(t), that is, the probability that the system has
(iii) There is a rescaling of the equation, using its invari-not reached the absorbing state at tilmeand the mean-
ance under the following set of transformations:square distance of spreading from the origin of the surviving
U—u' =UNpin,  W1—W;=W1Nmin, n(i,t)—m(i,t) trials: R3(t)=2;i?m(i,t)/N(t). Right at the critical point
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FIG. 1. (a) IN[N(®)] vs In@), (b) In[Pt)] vs In(t), (c) IN[R3(t)] vs Int), and(d) IN[N(i=0,t)] vs In(t) for r = —0.50583,w; =1, and(from top to bottom
a=0.3 (solid line), «=0.2 (dotted ling, «=0.0 (dashed ling a=—0.08 (long-dashed ling anda= —0.1 (dot-dashed ling respectively.

there is no characteristic time scale and these magnitudés found to be atr .~ —0.505 83, whiler = —0.505 84 and

scale asymptotically as power laws r=—0.505 82 are in the absorbing and active phases, respec-
” tively. From the extrapolated value of the critical curves at
N(t)et?, 4) 14=0 we measure the critical exponenis=0.30+0.01,

6=0.17+0.01, andz=1.27+0.01. All of them are consis-
tent within the accuracy limits with the known RFT one-
dimensional value$;~0.312, §~0.159, andz~1.264 and
with the scaling law for the RFT2,3], confirming in this
R2(t)oct?. (6) way the validity of the integration method.
As was said previously, the dependence of the micro-
In order to test the numerical procedure we start with thescopic models with an infinite number of absorbing states on
analysis of the RFT, which corresponds to fixing=0. The  the nature of the initial absorbing state has it counterpart in
critical point is located using the idea that the previouslythe exponential non-Markovian term in E@) [16]. There-
introduced magnitudes exhibit a power-law behavior right afore, in order to study whether or not that dependence affects
the critical point and deviate from it out of criticality. the critical behavior in the field theory, we study the Lange-
As at the critical point for long enough times vin equation for different values af.
n=d In[N(t)]J/d In(t), a plot ofd In[N(t)]/d In(t) as a function We have performed simulations far=0.3, 0.2,—0.08,
of 14 should give a straight line for smalltifight at the and —0.1 and found the following resultsee Table | and
critical point, while for values slightly subcritical or super- Fig. 1). (i) We observe no measurable shift in the critical
critical the curves of that plot should exhibit some curvature point with respect to the RFTa(=0) caser .~ —0.505 83
Using that idea, the critical point can be located accurately; itn all the cases, i.e., the critical point location does not de-

Ps(t)ect ™2, (5)

and
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pend one. (ii) The exponents; and § are not universal and 2(8+75)+26=dz (7)
depend continuously oa. (iii) The exponent is universal

and takes its RFT valuéiv) The combinationy+ &, which

describes the asymptotic behavior of the total number of paryy gifferent values of. In DP it can be showfil3,20 that
ticles averaged over the surviving runs, is constant for all they— 5 and therefore the scaling relation read$+2 »=dz

a values. The numerical values are presented in Table . p .+ iy general 0+ 8. Note that as Eq(7) depends on the
whgll i;hf?) uit:jo}/r?trzeesrl:qlirssrgogcvﬁqrg dgrjsocilnagz;?t?c?g:t r‘:‘g:gcombination ofp+ &, z, and # and these three are constants
that the exponents associated with magnitudes obtained aft]:aorr different values ofy, the hyperscaling relation is satisfied

i o Wwithin the accuracy limits in all the cases. Therefore, the
averaging only over surviving run and , + 5) appear to one-dimensional Langevin equation with only one absorbin
be universal, while those involving the surviving probability 9 9 y 9

(7 and §) present a nonuniversal behavior @ss varied. To state and a non-Markovian term reprqduces.rgmgrkably well
further check this conclusion, we have perform other simu2!l the phenomenology of systems with an inifinite number
lations varying the value ofv;. Note that by tuning this Of absorbing states. _ _
parameter the non-Markovian effect can be reduced or am- W€ have applied a numerical scheme, introduced by
plified, i.e., large values oW, imply that the exponential chkman for the stl_de of stochastic pgrtlal dlffergntlal equa-
converges rapidly to zero and the memory is small; contrartions, to the analysis of a non-Markovian Langevin equation.
ily, small w, values intensify the memory. In all the cases, This Langevin equation was recently proposed as a theoret-
we observe that the convergence time, that is, the time rdcal description of systems with an infinite number of absorb-
quired to observe the asymptotic regime, dependsgrbut  ing states. Our numerical study confirms the theoretical pre-
the critical exponents do not. diction that the bulk critical properties are universal and
Finally, we have also computed the exponérihat con-  belong in the Reggeon field theory universality class. On the
trols the decay of the density at the origin as a function ofother hand, we have shown that the model reproduces also
time (see Table)l As the system evolves the origin gets, onthe, so far not well understood, nonuniversal critical behav-
average, deeper and deeper into the cluster of occupied sitdsr observed in spreading experiments in microscopic mod-
The bulk properties of this cluster have to coincide withels, as well as the hyperscaling relation proposed for that
those obtained in experiments starting with a homogeneou§lass of system. Therefore, the one-dimensional Langevin
initial condition. For that type of initial condition and when equation with on|y one absorbing state and a non-Markovian
the system in tuned to the critical point, any initial density term reproduces remarkably well all the phenomenology of
decays asy;nptotlcally to zero with an exponefiti.e.,  gystems with an inifinite number of absorbing states. Under-
(n(01))~t"% Therefore, measuring we can determine gianging analytically the nonuniversality from the field
whether the bulk critical properties of the non-Markovian theory remains an open challenge. Further analysis and ex-

thelgry alie Rf';:'“k.e als Fredlcted 6] ted in Taltkee th tension of these conclusions to higher dimensions are
esults of the simulations are presented in Tal§ e planned to be presented elsewhE2a].

last column. It is clear that within the accuracy limits
6~0.16 is the same for all the values af confirming the It is a pleasure to acknowledge Geoffrey Grinstein, Ron

prediction in[16]. Dickman, and Pedro Garrido for very useful discussions and

Using the set of measured exponents, we can check thgymments. This work was partially supported by the Euro-
scaling relation proposed for systems with an infinite ”Umbebean Community through a grant to M.A.M.
of absorbing statefl 3,20, namely,
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